
Gradient Ascent

Chris Piech
CS109

Lecture #22

Nov 13th, 2017

Maximum Likelihood Refresher

Our first algorithm for estimating parameters is called Maximum Likelihood Estimation (MLE). The central
idea behind MLE is to select that parameters (θ ) that make the observed data the most likely.

The data that we are going to use to estimate the parameters are going to be n independent and identically
distributed (IID) samples: X1,X2, . . .Xn.

Likelihood

First we define the likelihood of our data give parameters θ :

L(θ) =
n

∏
i=1

f (Xi|θ)

This is the probability of all of our data. It evaluates to a product because all Xi are independent. Now we
chose the value of θ that maximizes the likelihood function. Formally θ̂ = argmax

θ

L(θ).

A cool property of argmax is that since log is a monotone function, the argmax of a function is the same
as the argmax of the log of the function! That’s nice because logs make the math simpler. Instead of using
likelihood, you should instead use log likelihood: LL(θ ).

LL(θ) = log
n

∏
i=1

f (Xi|θ) =
n

∑
i=1

log f (Xi|θ)

To use a maximum likelihood estimator, first write the log likelihood of the data given your parameters. Then
chose the value of parameters that maximize the log likelihood function. Argmax can be computed in many
ways. Most require computing the first derivative of the function.

Gradient Ascent Optimization

In many cases we can’t solve for argmax mathematically. Instead we use a computer. To do so we employ
an algorithm called gradient ascent (a classic in optimization theory). The idea behind gradient ascent is that
if you continuously take small steps in the direction of your gradient, you will eventually make it to a local
maxima.



Start with theta as any initial value (often 0). Then take many small steps towards a local maxima. The new
theta after each small step can be calculated as:

θ
new

j = θ
old

j +η · ∂LL(θ old)

∂θ old
j

Where “eta” (η) is the magnitude of the step size that we take. If you keep updating θ using the equation
above you will (often) converge on good values of θ . As a general rule of thumb, use a small value of η to
start. If ever you find that the function value (for the function you are trying to argmax) is decreasing, your
choice of η was too large. Here is the gradient ascent algorithm in pseudo-code:

Linear Regression Lite

MLE is an algorithm that can be used for any probability model with a derivable likelihood function. As an
example lets estimate the parameter θ in a model where there is a random variable Y such that Y = θX +Z,
Z ∼ N(0,σ2) and X is an unknown distribution.

In the case where you are told the value of X , θX is a number and θX +Z is the sum of a gaussian and a
number. This implies that Y |X ∼N(θX ,σ2). Our goal is to chose a value of θ that maximizes the probability
IID: (X1,Y1),(X2,Y2), . . .(Xn,Yn).

We approach this problem by first finding a function for the log likelihood of the data given θ . Then we find
the value of θ that maximizes the log likelihood function. To start, use the PDF of a Normal to express the
probability of Y |X ,θ :

f (Yi|Xi,θ) =
1√

2πσ
e−

(Yi−θXi)
2

2σ2

Now we are ready to write the likelihood function, then take its log to get the log likelihood function:

L(θ) =
n

∏
i=1

f (Yi,Xi|θ) Let’s break up this joint

=
n

∏
i=1

f (Yi|Xi,θ) f (Xi) f (Xi) is independent of θ

=
n

∏
i=1

1√
2πσ

e−
(Yi−θXi)

2

2σ2 f (Xi) Substitute in the definition of f (Yi|Xi)

2



LL(θ) = logL(θ)

= log
n

∏
i=1

1√
2πσ

e−
(Yi−θXi)

2

2σ2 f (Xi) Substitute in L(θ)

=
n

∑
i=1

log
1√

2πσ
e−

(Yi−θXi)
2

2σ2 +
n

∑
i=1

log f (Xi) Log of a product is the sum of logs

= n log
1√
2π
− 1

2σ2

n

∑
i=1

(Yi−θXi)
2 +

n

∑
i=1

log f (Xi)

Remove positive constant multipliers and terms that don’t include θ . We are left with trying to find a value
of θ that maximizes:

θ̂ = argmax
θ

−
n

∑
i=1

(Yi−θXi)
2

To solve this argmax we are going to use Gradient Ascent. In order to do so we first need to find the derivative
of the function we want to argmax with respect to θ .

∂

∂θ
−

n

∑
i=1

(Yi−θXi)
2 =−

n

∑
i=1

∂

∂θ
(Yi−θXi)

2

=−
n

∑
i=1

2(Yi−θXi)(−Xi)

=
n

∑
i=1

2(Yi−θXi)(Xi)

This first derivative can be plugged into gradient ascent to give our final algorithm:

3


